Definition
Given a function $f:[-\pi, \pi] \rightarrow \mathbb{R}$.

- The Fourier coefficients are given by

$$
\hat{f}(n)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(y) e^{-i n y} d y
$$

- The Fourier Series of f is given by

$$
f \sim \sum_{n=-\infty}^{\infty} \hat{f}(n) e^{i n x}
$$

. The N-th partial sum of the Fourier Series of f is given by

$$
S_{N}(f)(x)=\sum_{n=-N}^{N} \hat{f}(n) e^{i n x}
$$

Compute Fourier Series and judge the convergence property
(I) Define $f:[-\pi, \pi] \rightarrow \mathbb{R}$ by

$$
f(x)=\pi-|x|
$$

For $n \neq 0, \hat{f}(n)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(y) e^{i n y} d y$

$$
=\frac{1}{2 \pi}\left(\int_{-\pi}^{\pi} f(y) \cos n y d y+i \int_{-\pi}^{\pi} f(y) \sin n y d y\right.
$$

$$
\begin{aligned}
\left(\begin{array}{l}
\text { since } f \text { is even, } \\
\cos n y \text { is even, } \\
\text { sinny is odd . }
\end{array}\right) & =\frac{1}{\pi} \int_{0}^{\pi} f(y) \cos n y d y \\
& =\frac{1}{\pi} \int_{0}^{\pi}(\pi-y) \cos n y d y \\
& =\int_{0}^{\pi} \cos n y d y-\int_{0}^{\pi} \frac{y}{\pi} \cos n y d y \\
& =\left.\frac{\sin n y}{n}\right|_{0} ^{\pi}-\left(\left.\frac{y \sin n y}{n \pi}\right|_{0} ^{\pi}-\int_{0}^{\pi} \frac{\sin n y}{n \pi} d y\right. \\
& =-\left.\frac{\cos n y}{n^{2} \pi}\right|_{0} ^{\pi} \\
& =\frac{1-(-1)^{n}}{n^{2} \pi}
\end{aligned}
$$

For $n \neq 0, \hat{f}(n)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(y) d y$

$$
\begin{aligned}
& =\frac{1}{\pi} \int_{0}^{\pi}(\pi-x) d y \\
& =\left.\frac{1}{\pi}\left(\pi x-\frac{x^{2}}{2}\right)\right|_{0} ^{\pi} \\
& =\frac{\pi}{2}
\end{aligned}
$$

Thus, $S_{N}(f)(x)=\sum_{n=-N}^{N} \hat{f}(n) e^{i n x}$

$$
=\frac{\pi}{2}+\sum_{n=0}^{N} \frac{1-(-1)^{n}}{\pi n^{2}}\left(e^{i n x}+e^{-i m x}\right)
$$

Therefore, $\left|S_{N}(f)(x)\right| \leqslant \frac{\pi}{2}+\frac{4}{\pi} \sum_{n=1}^{N} \frac{1}{n^{2}}<\infty$ as $N \rightarrow \infty$.
Hence, the Fourier Series of f is uniformly converges.
(II) Define $f:[-\pi, \pi] \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}-\pi-x, & \text { if }-\pi \leq x<0, \\ 0, & \text { if } x=0, \\ \pi-x, & \text { if } \quad 0<x<\pi .\end{cases}
$$

For $n \neq 0, \hat{f}(n)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(y) e^{i n y} d y$

$$
=\frac{1}{2 \pi}\left(\int_{-\pi}^{\pi} f(y) \cos n y d y+i \int_{-\pi}^{\pi} f(y) \sin n y d y\right)
$$

$$
\begin{aligned}
&\left(\begin{array}{l}
\text { Since } f \text { is odd, } \\
\text { cos ny is even. } \\
\text { sinny is odd. }
\end{array}\right) \bumpeq \\
&=\frac{i}{\pi} \int_{0}^{\pi} f(y) \sin n y d y \\
&=\frac{i}{\pi} \int_{0}^{\pi}(\pi-y) \sin n y d y
\end{aligned}
$$

$$
\begin{aligned}
& =i \int_{0}^{\pi} \sin n y d y-\int_{0}^{\pi i y \sin y} \\
\pi & d y \\
\text { Integral by part } \leftarrow & =\left.\frac{-i \cos n y}{n}\right|_{0} ^{\pi}-\left(\left.\frac{-i y \cos n y}{n \pi}\right|_{0} ^{\pi}-\int_{0}^{\pi} \frac{-i \cos n y}{n \pi} d y\right) \\
& =\frac{i\left(1-(-1)^{n}\right)}{n}+\frac{i \pi(-1)^{n}}{n \pi}+0 \\
& =\frac{i}{n}
\end{aligned}
$$

For $n=0, \hat{f}(n)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(y) d y=0$ since f is odd.
Thus $\quad S_{N}(f)(x)=\sum_{n=1}^{N}\left(\frac{i}{n} e^{i n x}-\frac{i}{n} e^{-i n x}\right)$

$$
\begin{aligned}
& =\sum_{n=1}^{N} \frac{i}{n}(2 i \sin n x) \\
& =-2 \sum_{n=1}^{N} \frac{\sin n x}{n}
\end{aligned}
$$

Dirichlet's Test.
If $\left(a_{n}\right)$ is a sequence of real numbers and (ba) is a sequence of complex numbers sentisfying

- $a_{n} \downarrow 0$ as $n \rightarrow \infty$
- $\left|\sum_{n=1}^{N} b_{n}\right| \leqslant M$ for any $N \in \mathbb{N}$,
then $\sum_{n=1}^{\infty} a_{n} b_{n}<\infty$

For any $x \neq 0$, let $a_{n}=\frac{1}{n}$ and $b_{n}=e^{i n x}$. Clearly, an \downarrow_{0} as $n \rightarrow \infty$

$$
\left|\sum_{n=1}^{N} b_{n}\right|=\left|\sum_{n=1}^{N} e^{i m x}\right|=\left|\frac{1-e^{i N x}}{1-e^{i x}}\right|<\frac{2}{\left|1-e^{i x}\right|}<\infty
$$

By Dirichlet's Test, $\sum_{n=1}^{\infty} \frac{i}{n} e^{i n x}<\infty$
Similarly, $\sum_{n=1}^{\infty} \frac{-i}{n} e^{-i n x}<\infty$
Therefore, the Fonvier series of f converges for any

$$
x \neq 0
$$

Note that $S_{N}(f)(0)=0$ for any N.
Hence, the Fourier series of f converges for any $x \in[-\pi, \pi]$.

Definition
Given a series $\sum_{n=1}^{\infty} c_{n}$ of complex numbers.
Let $S_{n}:=\sum_{k=1}^{n} C_{k}, \sigma_{N}:=\frac{1}{N} \sum_{n=1}^{N} S_{n}$ and $A(n)=\sum_{n=1}^{\infty} C_{n} r^{n}$

- $\sum_{n=1}^{\infty} C_{n}$ is Cesívo suwimable to s if $\sigma_{N} \rightarrow s$ as $N \rightarrow \infty$
- $\sum_{n=1}^{\infty} c_{n}$ is Abel summable to s if $A(r)$ converges for any $r \in[0,1)$ and $\lim _{r \rightarrow 1^{-}} A(r)=s$.
(I) Show that

Convergence \Rightarrow Casino Summability \Rightarrow Abel Summability and none of the implications can be reserved.
(i) Convergence \Rightarrow Cesar oo Summability

$$
S_{n} \rightarrow s \text { as } n \rightarrow \infty \Rightarrow \frac{1}{N} \sum_{n=1}^{N} S_{n} \rightarrow s \text { as } n \rightarrow \infty
$$

(ii) Cersaro Summability Convergence

If $s_{n}=(-1)^{n}$, then s_{n} diverges as $n \rightarrow \infty$ and $\sigma_{N}=\frac{1}{N} \sum_{n=1}^{N} s_{n} \rightarrow 0$ as $N \rightarrow \infty$
To construct such a sequence, let

$$
(-1)^{n}=S_{n}=\sum_{k=1}^{n} C_{k} \text { for any } n \text {. }
$$

Then $C_{1}=S_{1}=-1$ and $C_{n}=S_{n}-S_{n-1}=(-1)^{n}-(-1)^{n-1}$

$$
=(-1)^{n} \cdot 2 \text { for } n \geq 2 \text {. }
$$

(iii) Cesàro Summability \Rightarrow Abel Summability

Note that $\sum_{n=1}^{N} c_{n} r^{n}$

$$
\begin{aligned}
\text { Since } c_{n}=S_{n}-S_{n-1} \leftarrow & =\sum_{n=1}^{N}\left(S_{n}-S_{n-1}\right) r^{n} \\
& =\sum_{n=1}^{N} S_{n} r^{n}-\sum_{n=0}^{N-1} S_{n} r^{n+1} \\
& =\sum_{n=1}^{N-1} S_{n}\left(r^{n}-r^{n+1}\right)+S_{N} r^{N} \\
& =(1-v) \sum_{n=1}^{N-1} S_{n} r^{n}+S_{N} r^{N} \\
\text { Since } S_{n}=n \sigma_{n}-(n-1)_{n} \ll & =(1-r) \sum_{n=1}^{N-1}\left[n \sigma_{n}-(n-1) \sigma_{n-1}\right] r^{n}+S_{N} r^{N} \\
& =(1-r)\left(\sum_{n=1}^{N-1} n \sigma_{n} r^{n}-\sum_{n=1}^{N-2} n \sigma_{n} r^{n+1}\right)+S_{N} r^{N} \\
& =(1-r)^{2} \sum_{n=1}^{N-2} n \sigma_{n} r^{n}+(N-1) \sigma_{N} r^{n-1}+S_{N} r^{N}
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty} n r^{n}=0$ for $v \in(0,1), A(r)=(1-r)^{2} \sum_{n=1}^{\infty} n \sigma_{n} r^{n}$
Since $\sigma_{n} \rightarrow s$ as $n \rightarrow \infty$, to show $A(v)<\infty$, At suffices to show $\sum_{n=1}^{\infty} n r^{n}<\infty$

Notice that $\sum_{n=1}^{N} n \gamma^{n}=\sum_{n=1}^{N} \sum_{k=n}^{N} r^{n}$

$$
\begin{aligned}
& =\sum_{n=1}^{N} r^{n}\left(\frac{1-r^{N-n}}{1-r}\right) \\
& =\frac{1}{1-r} \sum_{n=1}^{N}\left(r^{n}-r^{N}\right) \\
& =\frac{r}{(1-r)^{2}}-\frac{r^{N}}{(1-r)^{2}}-\frac{N r^{N}}{1-r} \rightarrow \frac{r}{(1-r)^{2}} \text { as } N \rightarrow \infty .
\end{aligned}
$$

Thus $A(r)=(1-r)^{2} \sum_{n=1}^{\infty} n \sigma_{n} r^{n}$ converges for any $r \in(0,1)$.

$$
\begin{aligned}
|A(r)-s| & \leqslant\left|A(r)-(1-r)^{2} \sum_{n=1}^{\infty} n s r^{n}\right|+\left|(1-r)^{2} \sum_{n=1}^{\infty} n s r^{n}-s\right| \\
& =\left|(1-r)^{2} \sum_{n=1}^{\infty} n\left(\sigma_{n}-s\right) r^{n}\right|+|r s-s|
\end{aligned}
$$

$\begin{aligned} & \text { Take } N \in \mathbb{N} \text { st. } \\ & \left\lvert\, \begin{array}{l}\left|\sigma_{n}-s\right|<\varepsilon \text { for } \\ n \geqslant N\end{array}\right.\end{aligned}<\left|(1-r)^{2} \sum_{n=1}^{N} n\left(\sigma_{n}-s\right) r^{n}\right|+\left|(1-r)^{2} \sum_{n=N+1}^{\infty} n\left(\sigma_{n}-s\right) r^{n}\right|$

$$
+s|r-1|
$$

 and $1-r_{0}<\frac{1}{s}$

Hence, $A(r) \rightarrow s$ as $r \rightarrow 1^{-}$, ie., $\sum_{n=1}^{\infty} C_{n}$ is Abel summable to s.
(iv) Abel summability $\#$ Cesarro summability If $\sigma_{n}=\left\{\begin{array}{l}0, n \text { is odd, } \\ 1, n \text { is even, }\end{array}\right.$ then

$$
\begin{aligned}
A(r) & =(1-v)^{2} \sum_{n=1}^{\infty} n \sigma_{n} r^{n} \\
& =(1-v)^{2} \sum_{n=1}^{\infty} 2 n r^{2 n} \\
& =2(1-v)^{2} \sum_{n=1}^{\infty}\left(r^{2}\right)^{n} \\
& =2(1-r)^{2} \frac{r^{2}}{\left(1-r^{2}\right)^{2}} \\
& =2 \frac{r^{2}}{(1+r)^{2}} \rightarrow \frac{1}{2} \text { as } r \rightarrow 1^{-}
\end{aligned}
$$

Thus $\sum_{n=1}^{\infty} C_{n}$ is Abel summable to 1 but not Cesar summable.

To construct such a sequence, recall

$$
\begin{gathered}
S_{n}=n \sigma_{n}-(n-1) \sigma_{n-1}=\left\{\begin{array}{c}
n, n \text { is even } \\
-(n-1), n \text { is odd }
\end{array}\right. \text { and } \\
C_{n}=S_{n}-S_{n-1}=\left\{\begin{array}{l}
2 n-2, n \text { is even } \\
-(2 n-2), n \text { is odd } \\
\{0,2,-4,6,-8, \ldots\}
\end{array}\right.
\end{gathered}
$$

(II) Suppose $n C_{n} \rightarrow 0$ as $n \rightarrow \infty$. Then

Convergence \rightleftarrows Cesàro Summability \rightleftarrows Abel Summability

Tauberian Theorem
If $n C_{n} \rightarrow 0$, then Abel summability implies convergence.
Proof:

$$
\begin{aligned}
& \left|\sum_{n=1}^{N} C_{n}-A(r)\right| \\
\leq & \left|\sum_{n=1}^{N} C_{n}-\sum_{n=1}^{N} C_{n} r^{n}\right|+\left|\sum_{n=N+1}^{\infty} C_{n} r^{n}\right| \\
= & \left|\sum_{n=1}^{N} C_{n}\left(1-r^{n}\right)\right|+\left|\sum_{n=N+1}^{\infty} C_{n} r^{n}\right| \\
= & \left|(1-r) \sum_{n=1}^{N}\right| C_{n}|n|+\left|\sum_{n=N+1}^{\infty} C_{n} r^{n}\right| \\
\leq & \frac{1}{N} \sum_{n=1}^{N}\left|C_{n}\right| n+N \operatorname{sump}_{n=2}\left|C_{n}\right| \quad \text { if } \quad r=1-\frac{1}{N}
\end{aligned}
$$

Therefore $\left|\sum_{n=1}^{N} C_{n}-s\right| \leq\left|\sum_{n=1}^{N} C_{n}-A\left(1-\frac{1}{N}\right)\right|+\left|A\left(1-\frac{1}{N}\right)-s\right|$
since $c_{n} c_{n \rightarrow \infty,} \quad \leq\left|\frac{1}{N} \sum_{n=1}^{N}\right| c_{n}|n|+N \operatorname{lin}_{n}|n \rightarrow 0, \quad| c_{n}\left|+\left|A\left(1-\frac{1}{N}\right)-s\right|\right.$
Take N s.t. $\leqslant \varepsilon+\varepsilon+\varepsilon=3 \varepsilon$

$$
\left.\left.\frac{1}{N} \sum_{n=1}\right|_{n} \right\rvert\, n<\varepsilon,\left(\left.A\left(1-\frac{1}{n}\right)-s \right\rvert\, k \varepsilon\right.
$$

and $n k_{n} k \varepsilon$ for any $n>N$

Hence, $\sum_{n=1}^{\infty} c_{n}=s$

