Definition
Given a function
$$f: [-\pi, \pi] \rightarrow R$$
.
The Fonvier coefficients are given by
 $\hat{f}(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y) e^{-iny} dy$
The Fonvier Series of f is given by
 $f \sim \sum_{n=-\infty}^{\infty} \hat{f}(n) e^{inx}$
The N-th partial and of the Fonvier Series of f is given by
 $S_{V}(f)(x) = \sum_{n=-N}^{N} \hat{f}(n) e^{inx}$

(I) Define
$$f: [-\pi, \pi] \rightarrow |R$$
 by
 $f(x) = \pi - |x|$
For $n \neq 0$, $\hat{f}(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y) e^{iny} dy$
 $= \frac{1}{2\pi} \left(\int_{-\pi}^{\pi} f(y) \cos ny dy + i \int_{-\pi}^{\pi} f(y) \sin ny dy \right)$

(since f is even
(any is even)

$$= \frac{1}{\pi} \int_{0}^{\pi} f(y) \cos y \, dy$$

$$= \int_{0}^{\pi} (\pi - y) \cos y \, dy$$

$$= \int_{0}^{\pi} (\cos y \, dy - \int_{0}^{\pi} \frac{y}{\pi} \cos y \, dy$$

$$= \int_{0}^{\pi} (\cos y \, dy - \int_{0}^{\pi} \frac{y}{\pi} \cos y \, dy$$

$$= \int_{0}^{\pi} \frac{\sin y}{n \pi} \int_{0}^{\pi} -\left(\frac{y \sin y}{n \pi}\right) \int_{0}^{\pi} -\int_{0}^{\pi} \frac{\sin y}{n \pi} \, dy$$

$$= \int_{0}^{\pi} \frac{\sin y}{n \pi} \, dy$$

$$= \int_{0}^{\pi} \frac{\sin y}{n \pi} \, dy$$

$$= -\frac{\cos y}{n^{2} \pi} \int_{0}^{\pi}$$

$$= \frac{1 - (-1)^{\gamma}}{n^{2} \pi}$$
For $n \neq 0$, $\hat{f}(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y) \, dy$

$$= \frac{1}{\pi} \int_{0}^{\pi} (\pi - x) \, dy$$

$$= \frac{1}{\pi} \left(\pi x - \frac{x^{2}}{2}\right) \Big|_{0}^{\pi}$$

Thus,
$$S_{N}(f_{N}(x)) = \sum_{n=N}^{V} \widehat{f}(n) e^{in X}$$

 $= \frac{T}{2} + \sum_{n=0}^{N} \frac{(-(-1)^{\eta}}{\pi n^{2}} (e^{in X} + e^{-in X}))$
Thursfore, $|S_{N}(f_{N}(x)| \leq \frac{T}{2} + \frac{H}{\pi} \sum_{n=1}^{N} \frac{1}{n^{2}} < \infty$ as $N \rightarrow \infty$.
Hence, the Fourier Series of f is millioning convergent.
 \square
 \square
 \square
 \square
 \square

(II) Define
$$f: [-\pi, \pi] \rightarrow iR$$
 by
 $f(x) = \begin{cases} -\pi - x & \text{if } -\pi \leq x < 0 \\ 0 & \text{if } x = 0 \\ \pi - x & \text{if } x = 0 \end{cases}$,
For $n \neq 0$, $f(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y) e^{iny} dy$
 $= \frac{1}{2\pi} \left(\int_{-\pi}^{\pi} f(y) \cos ny dy + i \int_{-\pi}^{\pi} f(y) \sin ny dy \right)$
Since f is odd,
 $corny$ is even,
sinny is odd.
 $= \frac{i}{\pi} \int_{0}^{\pi} f(y) \sin ny dy$

$$= i \int_{0}^{\pi} shn ny \, dy - \int_{0}^{\pi} \frac{i y sin y}{\pi} \, dy$$

Integral by part = $-\frac{i (cos ny)}{n} \Big|_{0}^{\pi} - \left(\frac{-i y cos ny}{n \pi} \right) \Big|_{0}^{\pi} - \int_{0}^{\pi} \frac{-i (cos ny)}{n \pi} \, dy \Big)$

$$= \frac{i (1 - (-1)^{n})}{n} + \frac{i \pi (-1)^{n}}{n \pi} + 0$$

$$= -\frac{i}{n}$$

For
$$n=0$$
, $\hat{f}(n) = \pm \int_{-\pi}^{\pi} f(y) dy = 0$ since f is odd.

Thus
$$S_{N}(f)(x) = \sum_{n=1}^{N} \left(\frac{i}{n} e^{inx} - \frac{i}{n} e^{inx} \right)$$

 $= \sum_{n=1}^{N} \frac{i}{n} (2isinnx)$
 $= -2\sum_{n=1}^{N} \frac{sinnx}{n}$

Dividulet's Test.
If (an) is a sequence of real numbers and (bn) is
a sequence of complex numbers satisfying
· and · as n > 00
· |
$$\sum_{n=1}^{\infty}$$
 bn | $\leq M$ for any NEW,
then $\sum_{n=1}^{\infty}$ and $bn < \infty$

For any x = 0, let an = + and bn = e mx Clearly, on to as no so $\left|\sum_{n=1}^{N}b_{n}\right| = \left|\sum_{n=1}^{N}e^{inx}\right| = \left|\frac{1-e^{iNx}}{1-e^{ix}}\right| < \frac{2}{11-e^{ix}} < \infty$ By Divichlet's Test, Sind neinx < 20 Similarly, Z=ie-in× < 00 Therefore, the Fonvier series of f converges for any **スキ**0 Note that SN(f)(0) = 0 for any N. Hence, the Formier series of f converges for any $\chi \in [-\pi, \pi]$

Definition
Given a services
$$\tilde{\Xi}_{r=1}^{C}$$
 of complex numbers
Let $S_{n} := \tilde{\Xi}_{k=1}^{C} C_{k}$, $\sigma_{N} := \frac{1}{N} \tilde{\Xi}_{n=1}^{C} S_{n}$ and $A(r) = \tilde{\Xi}_{n=1}^{C} C_{n} r^{n}$
 $\cdot \tilde{\Xi}_{n=1}^{C} C_{n}$ is (escavo summable to s if $\sigma_{N} \Rightarrow s$ as $N \Rightarrow \infty$
 $\cdot \tilde{\Xi}_{n=1}^{C} C_{n}$ is Abel summable to s if $A(r)$ converges for
 $m_{N=1}^{C} C_{N}$ out $f_{N} = s$.

If
$$S_n = (-1)^n$$
, then S_n diverges as $n \to \infty$
and $\sigma_N = \frac{1}{N} \sum_{n=1}^N S_n \longrightarrow 0$ as $N \to \infty$.
To construct such a sequence, let
 $(-1)^n = S_n = \sum_{k=1}^N C_k$ for any n .

Then
$$C_1 = S_1 = -1$$
 and $C_n = S_n - S_{n-1} = (-1)^n - (-1)^{n-1}$
= $(-1)^n \cdot 2$ for $n \ge 2$

•

(iii) Cesaro Sammability
$$\Longrightarrow$$
 Abel Summability
Note that $\sum_{v=1}^{N} C_n v^n$
since $C_n = S_n + S_n t = \sum_{n=1}^{N} (S_n - S_{n-1}) v^n$
 $= \sum_{n=1}^{N} S_n v^n - \sum_{n=0}^{N-1} S_n v^{n+1}$
 $= \sum_{n=1}^{N-1} S_n (v^n - v^{n+1}) + S_{NV} v^N$
 $= (1-v) \sum_{n=1}^{N-1} S_n v^n + S_N v^N$
Since $S_n = n \sigma_n - t_{n-1} = (1-v) \sum_{n=1}^{N-1} [n \sigma_n - (n-1)\sigma_{n-1}] v^n + S_N v^N$
 $= (1-v) \left(\sum_{n=1}^{N-1} n \sigma_n v^n + (N-1)\sigma_N v^{n-1} + S_N v^N - (1-v) \sum_{n=1}^{N-2} n \sigma_n v^n + (N-1)\sigma_N v^{n-1} + S_N v^N$
Since $\int_{n\to\infty}^{1} S_n n v^n = 0$ for $v \in (0, 1)$, $A(v) = (1-v)^2 \sum_{n=1}^{N} n \sigma_n v^n$
Since $\sigma_n \to S$ and $n \to \infty$, to show $A(v) = \infty$, it suffices
to show $\sum_{n=1}^{N} n v^n = \infty$

$$\begin{aligned} \text{Motive theod} \quad & \sum_{n=1}^{N} n y^n = \sum_{n=1}^{N} \sum_{k=n}^{N} y^n \\ & = \sum_{\substack{\nu=1 \\ \nu = 1}^{N} y^n \Big(\frac{1-\nu^{N^{-n}}}{1-\nu} \Big) \\ & = \frac{1}{1-\nu} \sum_{\substack{n=1 \\ \nu = 1}^{N}} (y^n - \gamma^N) \\ & = \frac{\nu}{(1-\nu)^2} - \frac{\nu^N}{(1-\nu)^2} \rightarrow \frac{\nu}{(1-\nu)^2} \text{ as } \text{ More}. \end{aligned}$$

$$\begin{aligned} \text{Thus:} \quad & A(r) = (1-\nu)^2 \sum_{\substack{n=1 \\ n \neq 1}}^{\infty} nsy^n \quad \text{converges for any } \nu \in (0, 1). \\ & |A(r) - S| \leq |A(r) - (1-r)^2 \sum_{\substack{n=1 \\ \nu \neq 1}}^{\infty} nsy^n | + |(1-r)^2 \sum_{\substack{n=1 \\ \nu \neq 1}}^{\infty} nsy^n - S | \\ & = \left| (1-\nu)^2 \sum_{\substack{n=1 \\ \nu \neq 1}}^{\infty} n(\sigma_n - S)\gamma^n | + |rS - S | \\ & \text{Toke New (t.)} \quad & \leq \left| (1-r)^2 \sum_{\substack{n=1 \\ \nu \neq 1}}^{\infty} n(\sigma_n - S)\gamma^n | + |(1-\nu)^2 \sum_{\substack{n=1 \\ n \neq n \neq n}}^{\infty} n(\sigma_n - S)\gamma^n | \\ & n_{SW} \quad & + S|r-1| \\ & \text{Toke York } \quad & \leq 2 + \nu \geq +\epsilon \leq 3\epsilon \quad \text{for any } re((r_0, 1)) \\ & \text{and } 1-r\sigma \leq \frac{1}{5} \\ & \text{Hence, } A(r) \rightarrow S \quad \text{as } \quad Y \rightarrow 1^-, \quad i.e., \\ & \sum_{\substack{n=1 \\ \nu \neq 1}}^{\infty} C_n \text{ is Ahal summable to S}. \end{aligned}$$

(iv) Aleel summability
$$\Rightarrow$$
 Ceeders cummability
If $\sigma_n = \int_{1}^{0} \frac{1}{n}$, n is odd,
 $A(v) = (1-v)^2 \sum_{n=1}^{\infty} n\sigma_n r^n$
 $= (1-v)^2 \sum_{n=1}^{\infty} n\sigma_n r^n$
 $= 2(1-v)^2 \sum_{n=1}^{\infty} (v^2)^n$
 $= 2(1-v)^2 \sum_{n=1}^{v^2} (v^2)^n$
 $= 2 \frac{v^2}{(1-v^2)^2}$
 $= 2 \frac{v^2}{(1+v)^2} \Rightarrow \frac{1}{2}$ as $v \Rightarrow 1^-$
Thus $\sum_{n=1}^{\infty} C_n$ is Akel summable to 1 but not
Cesars summable.
To construct such a sequence, recall
 $S_n = n\sigma_n - (n-1)\sigma_{n-1} = \begin{cases} n, n \text{ is even} \\ -(2n-2), n \text{ is odd} \end{cases}$
 $C_n = S_n - S_{n-1} = \begin{cases} 2n-2, n \text{ is even} \\ -(2n-2), n \text{ is odd} \end{cases}$

IJ

(I) Suppose
$$N(n \rightarrow 0 \text{ or } n \rightarrow \infty$$
. Then
Convergence \iff Cesàro Summability \iff Abel Summability
Tamberian Theorem
If $n(n \rightarrow 0$, then Abel summability implies convergence.
Proof: $\left|\sum_{n=1}^{N}C_{n} - A(r)\right|$
 $\leq \left|\sum_{n=1}^{N}C_{n} - A(r)\right|$
 $\leq \left|\sum_{n=1}^{N}C_{n} - \frac{N}{2}C_{n}r^{n}\right| + \left|\sum_{n=N+1}^{\infty}C_{n}r^{n}\right|$
 $= \left|\sum_{n=1}^{N}C_{n}(1-r^{n})\right| + \left|\sum_{n=N+1}^{\infty}C_{n}r^{n}\right|$
 $\equiv \left|(1-r)\sum_{n=1}^{N}|C_{n}|n|\right| + \left|\sum_{n=N+1}^{\infty}C_{n}r^{n}\right|$
 $\leq \frac{1}{N}\sum_{n=1}^{N}|C_{n}|n| + N \sup_{n=N}^{\infty}|C_{n}|$ if $r = 1-\frac{1}{N}$
Therefore $\left|\sum_{n=1}^{\infty}C_{n} - S\right| \leq \left|\sum_{N=1}^{\infty}C_{n} - A(1-\frac{1}{N})\right| + \left|A(1-\frac{1}{N}) - S\right|$
Since $C_{n}n \rightarrow a$, $\leq |\frac{1}{N}\sum_{n=1}^{N}|C_{n}|n| + N \sup_{n\geq N}|C_{n}| + |A(1-\frac{1}{N}) - S|$
The set $S = \frac{1}{N}\sum_{n=1}^{N}|C_{n}|n| + N \sup_{n\geq N}|C_{n}| + |A(1-\frac{1}{N}) - S|$
The N set. $\leq \varepsilon + \varepsilon + \varepsilon = 3\varepsilon$
 $\int_{m}^{\infty}|C_{n}|r \in F \text{ for any NeW}$

Hence,
$$\sum_{r=1}^{\infty} C_r = S$$

П